

TPS3710

SBVS271 - OCTOBER 2015

TPS3710 Wide VIN Voltage Detector

1 Features

Wide Supply Voltage Range: 1.8 V to 18 V

· Adjustable Threshold: Down to 400 mV

High Threshold Accuracy:

1.0% Over Temperature

- 0.25% (Typical)

Low Quiescent Current: 5.5 μA (Typical)

Open-Drain Output

Internal Hysteresis: 5.5 mV (Typical)

Temperature Range: –40°C to +125°C

Packages:

SOT-6

1.5-mm x 1.5-mm WSON-6

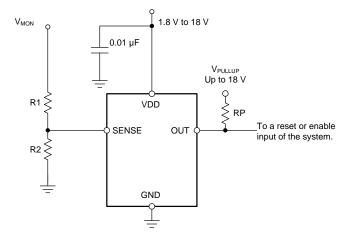
2 Applications

- Industrial Control Systems
- Automotive Systems
- · Embedded Computing Modules
- DSP, Microcontroller, or Microprocessor Applications
- Notebook and Desktop Computers
- · Portable- and Battery-Powered Products
- FPGA and ASIC Applications

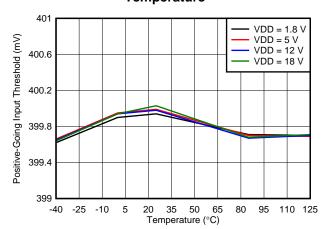
3 Description

The TPS3710 wide-supply voltage detector operates over a 1.8-V to 18-V range. The device has a high-accuracy comparator with an internal 400-mV reference and an open-drain output rated to 18 V for precision voltage detection. The monitored voltage can be set with the use of external resistors.

The OUT pin is driven low when the voltage at the SENSE pin drops below (V_{IT-}) , and goes high when the voltage returns above the respective threshold (V_{IT+}) . The comparator in the TPS3710 includes builtin hysteresis for filtering to reject brief glitches, thereby ensuring stable output operation without false triggering.


The TPS3710 is available in a SOT-6 package, and a 1.5-mm × 1.5-mm WSON-6 package, and is specified over the junction temperature range of –40°C to +125°C.

Device Information (1)


PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS3710	SOT (6)	2.90 mm × 1.60 mm
	WSON (6)	1.50 mm × 1.50 mm

 For all available packages, see the package option addendum at the end of the datasheet.

Simplified Schematic

Rising Input Threshold Voltage (V_{IT+}) vs Temperature

Table of Contents

1	Features 1		7.4 Device Functional Modes	10
2	Applications 1	8	Application and Implementation	11
3	Description 1		8.1 Application Information	11
4	Revision History2		8.2 Typical Application	13
5	Pin Configuration and Functions3		8.3 Do's and Don'ts	14
6	Specifications4	9	Power-Supply Recommendations	15
•	6.1 Absolute Maximum Ratings	10	Layout	15
	6.2 ESD Ratings		10.1 Layout Guidelines	15
	6.3 Recommended Operating Conditions4		10.2 Layout Example	15
	6.4 Thermal Information	11	Device and Documentation Support	16
	6.5 Electrical Characteristics5		11.1 Device Support	16
	6.6 Timing Requirements		11.2 Documentation Support	16
	6.7 Switching Characteristics 6		11.3 Community Resources	16
	6.8 Typical Characteristics 7		11.4 Trademarks	16
7	Detailed Description 9		11.5 Electrostatic Discharge Caution	16
-	7.1 Overview		11.6 Glossary	16
	7.2 Functional Block Diagram	12	Mechanical, Packaging, and Orderable Information	16

4 Revision History

DATE	REVISION	NOTES
October 2015	*	Initial release

5 Pin Configuration and Functions

Pin Functions

	PIN		I/O	DESCRIPTION			
NAME	DDC	DSE	1/0	DESCRIPTION			
GND	2, 4, 6	1, 3, 5	_	Connect all three pins to ground.			
OUT	1	6	0	SENSE comparator open-drain output. OUT is driven low when the voltage at this comparator is below ($V_{\rm IT-}$). The output goes high when the sense voltage returns above the respective threshold ($V_{\rm IT+}$).			
SENSE	3	4	I	This pin is connected to the voltage to be monitored with the use of an external resistor divider. When the voltage at this pin drops below the threshold voltage (V _{IT-}), OUT is driven low.			
VDD	5	2	I	Supply voltage input. Connect a 1.8-V to 18-V supply to VDD to power the device. Good analog design practice is to place a 0.1-µF ceramic capacitor close to this pin.			

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
	VDD	-0.3	20	
Voltage ⁽²⁾	OUT	-0.3	20	V
	SENSE	-0.3	7	
Current	OUT (output sink current)		40	mA
Tomporatura	Operating junction, T _J	-40	125	• °C
Temperature	Storage, T _{stg}	-65	150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
,	,	Floatractatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	±2500	.,
,	V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V_{DD}	Supply voltage		1.8	18	V
V_{I}	Input voltage	SENSE	0	6.5	V
Vo	Output voltage	OUT	0	18	V

6.4 Thermal Information

			TPS3710		
	THERMAL METRIC (1)	DDC (SOT)	DSE (WSON)	UNIT	
		6 PINS	6 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	204.6	194.9	°C/W	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	50.5	128.9	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	54.3	153.8	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	0.8	11.9	°C/W	
ΨЈВ	Junction-to-board characterization parameter	52.8	157.4	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

²⁾ All voltages are with respect to network ground pin.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, and 1.8 V < V_{DD} < 18 V (unless otherwise noted). Typical values are at $T_J = 25^{\circ}C$ and $V_{DD} = 5$ V.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(POR)	Power-on reset voltage (1)	V _{OL} max = 0.2 V, output sink current = 15 μA			0.8	V
.,	Decitive recipe in most three held weltere	V _{DD} = 1.8 V	396	400	404	\/
V _{IT+}	Positive-going input threshold voltage	V _{DD} = 18 V	396	400	404	mV
.,	Negative going input threshold voltage	V _{DD} = 1.8 V	387	394.5	400	\/
V _{IT}	Negative-going input threshold voltage	V _{DD} = 18 V	387	394.5	400	mV
V _{hys}	Hysteresis voltage (hys = $V_{IT+} - V_{IT-}$)			5.5	12	mV
I _(SENSE)	Input current (at the SENSE pin)	V _{DD} = 1.8 V and 18 V, V _I = 6.5 V	-25	1	25	nA
	Low-level output voltage	V _{DD} = 1.3 V, output sink current = 0.4 mA			250	mV
V _{OL}		V _{DD} = 1.8 V, output sink current = 3 mA			250	
		V _{DD} = 5 V, output sink current = 5 mA			250	
	On a during system that have a summer	V_{DD} = 1.8 V and 18 V, V_{O} = V_{DD}			300	- 1
I _{lkg(OD)}	Open-drain output leakage-current	V _{DD} = 1.8 V, V _O = 18 V			300	nA
		V _{DD} = 1.8 V, no load		5.5	11	
	Complex compant	V _{DD} = 5 V		6	13	
I _{DD}	Supply current	V _{DD} = 12 V		6	13	μΑ
		V _{DD} = 18 V		7	13	
UVLO	Undervoltage lockout (2)	V _{DD} falling	1.3		1.7	V

The lowest supply voltage (V_{DD}) at which output is active; $t_{r(VDD)} > 15 \mu s/V$. Below $V_{(POR)}$, the output cannot be determined. When V_{DD} falls below UVLO, OUT is driven low. The output cannot be determined below $V_{(POR)}$.

TEXAS INSTRUMENTS

6.6 Timing Requirements

over operating temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
t _{pd(HL)}	High-to-low propagation delay (1)	V_{DD} = 5 V, 10-mV input overdrive, R_P = 10 k Ω , V_{OH} = 0.9 × V_{DD} , V_{OL} = 400 mV, see Figure 1		18		μs
t _{pd(LH)}	Low-to-high propagation delay (1)	V_{DD} = 5 V, 10-mV input overdrive, R _P = 10 k Ω , V _{OH} = 0.9 x V _{DD} , V _{OL} = 400 mV, see Figure 1		29		μs
t _{d(start)}	Start-up delay (2)			150		μs

- (1) High-to-low and low-to-high refers to the transition at the input pin (SENSE).
- (2) During power on, V_{DD} must exceed 1.8 V for at least 150 µs before the output is in a correct state.

6.7 Switching Characteristics

over operating temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Output rise time	V_{DD} = 5 V, 10-mV input overdrive, R_P = 10 k Ω , V_O = (0.1 to 0.9) × V_{DD}		2.2		μs
t _f	Output fall time	V_{DD} = 5 V, 10-mV input overdrive, R_P = 10 k Ω , V_O = (0.1 to 0.9) × V_{DD}		0.22		μs

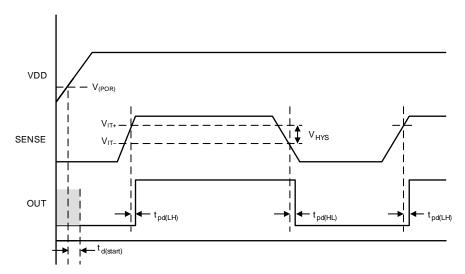
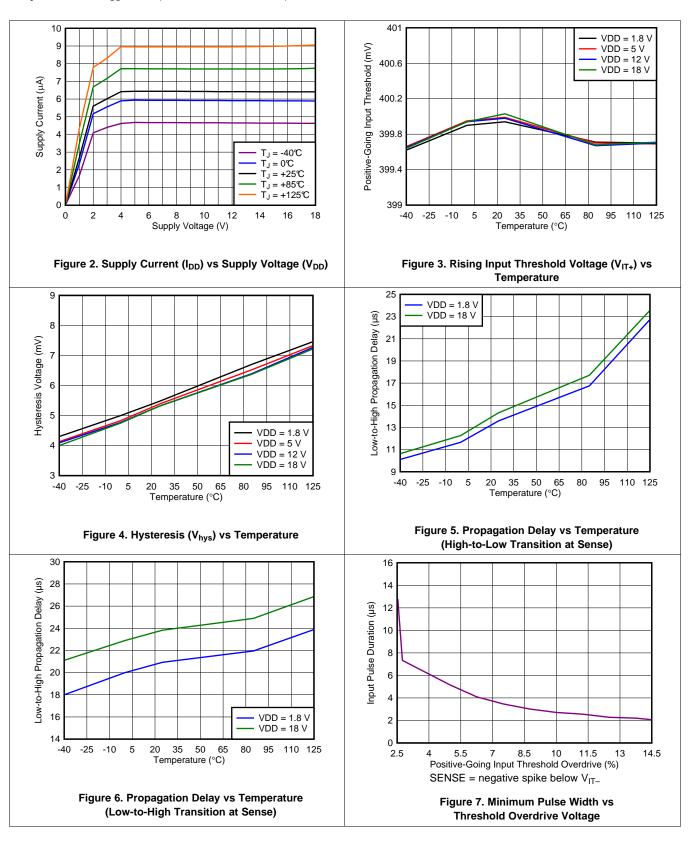
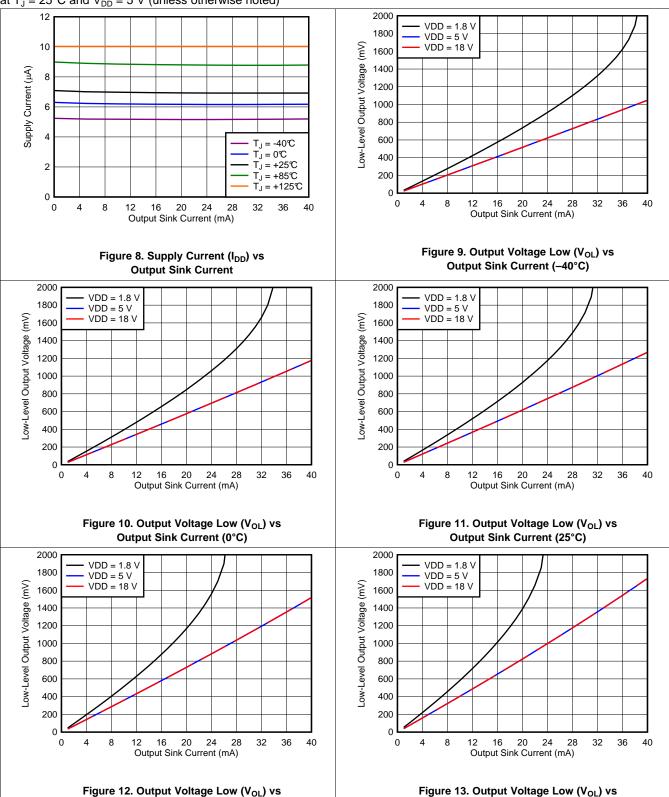



Figure 1. Timing Diagram

6.8 Typical Characteristics


at $T_J = 25^{\circ}C$ and $V_{DD} = 5 V$ (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_J = 25$ °C and $V_{DD} = 5$ V (unless otherwise noted)

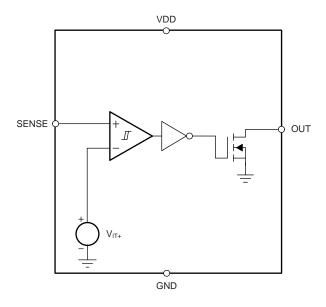
Output Sink Current (85°C)

Output Sink Current (125°C)

7 Detailed Description

7.1 Overview

www.ti.com


The TPS3710 provides precision voltage detection. The TPS3710 is a wide-supply voltage range (1.8 V to 18 V) device with a high-accuracy rising input threshold of 400 mV (1% over temperature) and built-in hysteresis. The output is also rated to 18 V, and can sink up to 40 mA.

The TPS3710 asserts the output signal, as shown in Table 1. To monitor any voltage above 0.4 V, set the input using an external resistor divider network. Broad voltage thresholds are supported that enable the device for use in a wide array of applications.

Table 1. TPS3710 Truth Table

CONDITION	OUTPUT	STATUS
SENSE > V _{IT+}	OUT high	Output not asserted
SENSE < V _{IT}	OUT low	Output asserted

7.2 Functional Block Diagram

TEXAS INSTRUMENTS

7.3 Feature Description

7.3.1 Input (SENSE)

The TPS3710 comparator has two inputs: one external input, and one input connected to the internal reference. The comparator rising threshold is trimmed to be equal to the reference voltage (400 mV). The comparator also has a built-in falling hysteresis that makes the device less sensitive to supply-rail noise and provides stable operation.

The comparator input (SENSE) is able to swing from ground to 6.5 V, regardless of the device supply voltage. Although not required in most cases, in order to reduce sensitivity to transients and layout parasitics for extremely noisy applications, place a 1-nF to 10-nF bypass capacitor at the comparator input.

OUT is driven to logic low when the input SENSE voltage drops below (V_{IT}). When the voltage exceeds V_{IT+} , the output (OUT) goes to a high-impedance state; see Figure 1.

7.3.2 Output (OUT)

In a typical TPS3710 application, the output is connected to a reset or enable input of the processor (such as a digital signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or application-specific integrated circuit [ASIC]) or the output is connected to the enable input of a voltage regulator (such as a dc-dc converter or low-dropout regulator [LDO]).

The TPS3710 device provides an open-drain output (OUT). Use a pullup resistor to hold this line high when the output goes to high impedance (not asserted). To connect the output to another device at the correct interface-voltage level, connect a pullup resistor to the proper voltage rail. The TPS3710 output can be pulled up to 18 V, independent of the device supply voltage.

Table 1 and the *Input (SENSE)* section describe how the output is asserted or deasserted. See Figure 1 for a timing diagram that describes the relationship between threshold voltage and the respective output.

7.3.3 Immunity to Input-Pin Voltage Transients

The TPS3710 is relatively immune to short voltage transient spikes on the sense pin. Sensitivity to transients depends on both transient duration and amplitude; see Figure 7, *Minimum Pulse Width vs Threshold Overdrive Voltage*.

7.4 Device Functional Modes

7.4.1 Normal Operation $(V_{DD} > UVLO)$

When the voltage on V_{DD} is greater than 1.8 V for at least 150 μ s, the OUT signal correspond to the voltage on SENSE as listed in Table 1.

7.4.2 Undervoltage Lockout $(V_{(POR)} < V_{DD} < UVLO)$

When the voltage on V_{DD} is less than the device UVLO voltage, and greater than the power-on reset voltage, $V_{(POR)}$, the OUT signal is asserted regardless of the voltage on SENSE.

7.4.3 Power-On Reset $(V_{DD} < V_{(POR)})$

When the voltage on V_{DD} is lower than the required voltage to internally pull the asserted output to GND ($V_{(POR)}$), SENSE is in a high-impedance state.

SBVS271 - OCTOBER 2015

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS3710 device is a wide-supply voltage comparator that operates over a V_{DD} range of 1.8 V to 18 V. The device has a high-accuracy comparator with an internal 400-mV reference and an open-drain output rated to 18 V for precision voltage detection. The device can be used as a voltage monitor. The monitored voltage are set with the use of external resistors.

8.1.1 V_{PULLUP} to a Voltage Other Than V_{DD}

The output is often tied to V_{DD} through a resistor. However, some applications may require the output to be pulled up to a higher or lower voltage than V_{DD} to correctly interface with the reset and enable pins of other devices.

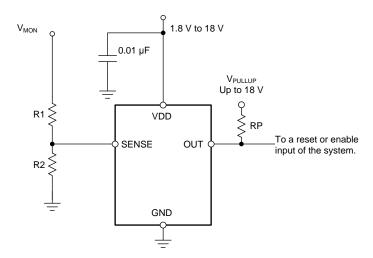


Figure 14. Interfacing to a Voltage Other Than V_{DD}

TEXAS INSTRUMENTS

Application Information (continued)

8.1.2 Monitoring V_{DD}

Many applications monitor the same rail that is powering V_{DD} . In these applications the resistor divider is simply connected to the V_{DD} rail.

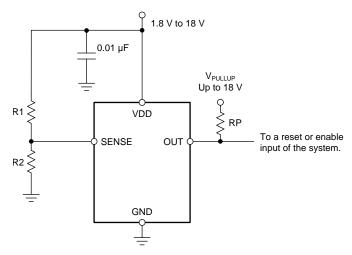
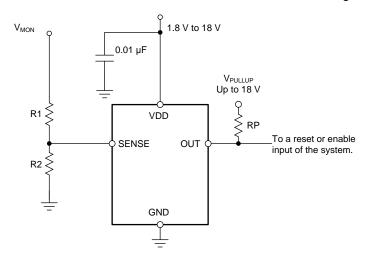



Figure 15. Monitoring the Same Voltage as V_{DD}

8.1.3 Monitoring a Voltage Other Than V_{DD}

Some applications monitor rails other than the one that is powering V_{DD} . In these types of applications the resistor divider used to set the desired threshold is connected to the rail that is being monitored.

NOTE: The input can monitor a voltage greater than maximum V_{DD} with the use of an external resistor divider network.

Figure 16. Monitoring a Voltage Other Than V_{DD}

8.2 Typical Application

The TPS3710 device is a wide-supply voltage comparator that operates over a V_{DD} range of 1.8 to 18 V. The monitored voltage is set with the use of external resistors, so the device can be used either as a precision voltage monitor.

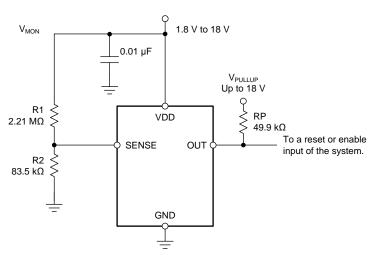


Figure 17. Wide VIN Voltage Monitor

8.2.1 Design Requirements

For this design example, use the values summarized in Table 2 as the input parameters.

Table 2. Design Parameters

PARAMETER	DESIGN REQUIREMENT	DESIGN RESULT
Monitored voltage	12-V nominal rail with maximum falling threshold of 10%	V _{MON(UV)} = 10.99 V (8.33%)

8.2.2 Detailed Design Procedure

8.2.2.1 Resistor Divider Selection

The resistor divider values and target threshold voltage can be calculated by using Equation 1 to determine $V_{MON(UV)}$.

$$V_{MON(UV)} = \left(1 + \frac{R1}{R2}\right) \times V_{IT-}$$
(1)

where

- . R1 and R2 are the resistor values for the resistor divider on the SENSEx pins
- V_{MON(UV)} is the target voltage at which an undervoltage condition is detected

Choose R_{TOTAL} (= R1 + R2) so that the current through the divider is approximately 100 times higher than the input current at the SENSE pin. The resistors can have high values to minimize current consumption as a result of low input bias current without adding significant error to the resistive divider. For details on sizing input resistors, refer to application report SLVA450, *Optimizing Resistor Dividers at a Comparator Input*, available for download from www.ti.com.

TEXAS INSTRUMENTS

8.2.2.2 Pullup Resistor Selection

To ensure the proper voltage level, the pullup resistor value is selected by ensuring that the pullup voltage divided by the resistor does not exceed the sink-current capability of the device. This confirmation is calculated by verifying that the pullup voltage minus the output-leakage current $(I_{lkg(OD)})$ multiplied by the resistor is greater than the desired logic-high voltage. These values are specified in the *Electrical Characteristics*.

Use Equation 2 to calculate the value of the pullup resistor.

$$\frac{\left(V_{HI} - V_{PU}\right)}{I_{lkg(OD)}} \ge R_{PU} \ge \frac{V_{PU}}{I_{O}} \tag{2}$$

8.2.2.3 Input Supply Capacitor

Although an input capacitor is not required for stability, for good analog design practice, connect a 0.1-µF low equivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power source.

8.2.2.4 Sense Capacitor

Although not required in most cases, for extremely noisy applications, place a 1-nF to 10-nF bypass capacitor from the comparator input (SENSE) to the GND pin for good analog design practice. This capacitor placement reduces device sensitivity to transients.

8.2.3 Application Curves

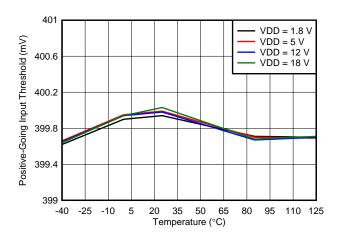


Figure 18. Rising Input Threshold Voltage (VIT.) vs Temperature

8.3 Do's and Don'ts

Do connect a 0.1-µF decoupling capacitor from V_{DD} to GND for best system performance.

If the monitored rail is noisy, do connect a decoupling capacitor from the comparator input (sense) to GND.

Don't use resistors for the voltage divider that cause the current through them to be less than 100 times the input current of the comparator without also accounting for the effect to the accuracy.

Don't use a pullup resistor that is too small, because the larger current sunk by the output then exceeds the desired low-level output voltage (V_{OL}) .

9 Power-Supply Recommendations

These devices operate from an input voltage supply range between 1.8 V and 18 V.

10 Layout

www.ti.com

10.1 Layout Guidelines

Placing a 0.1-µF capacitor close to the VDD pin to reduce the input impedance to the device is good analog design practice.

10.2 Layout Example

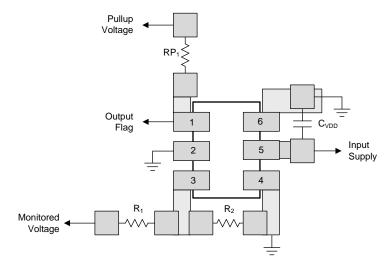


Figure 19. Layout Example

11 Device and Documentation Support

11.1 Device Support

11.1.1 Device Nomenclature

Table 3. Device Nomenclature

PRODUCT	DESCRIPTION
TPS3710 yyyz	yyy is package designator z is package quantity

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation, see the following:

Optimizing Resistor Dividers at a Comparator Input, SLVA450

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

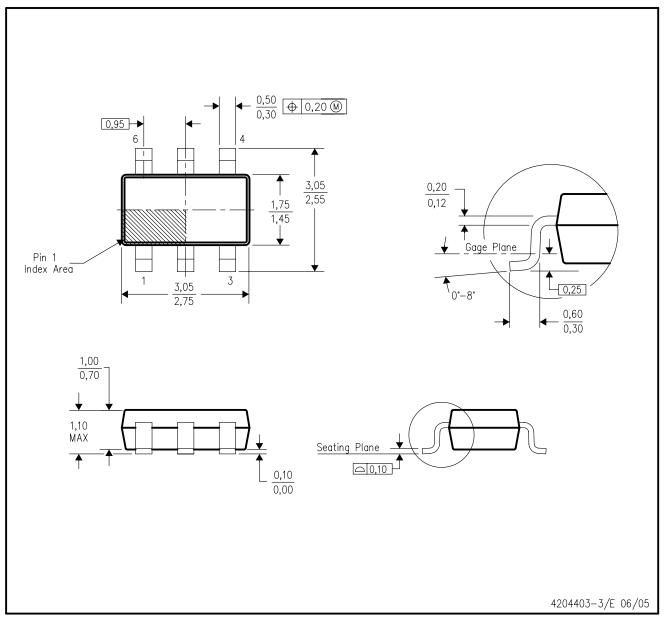
11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

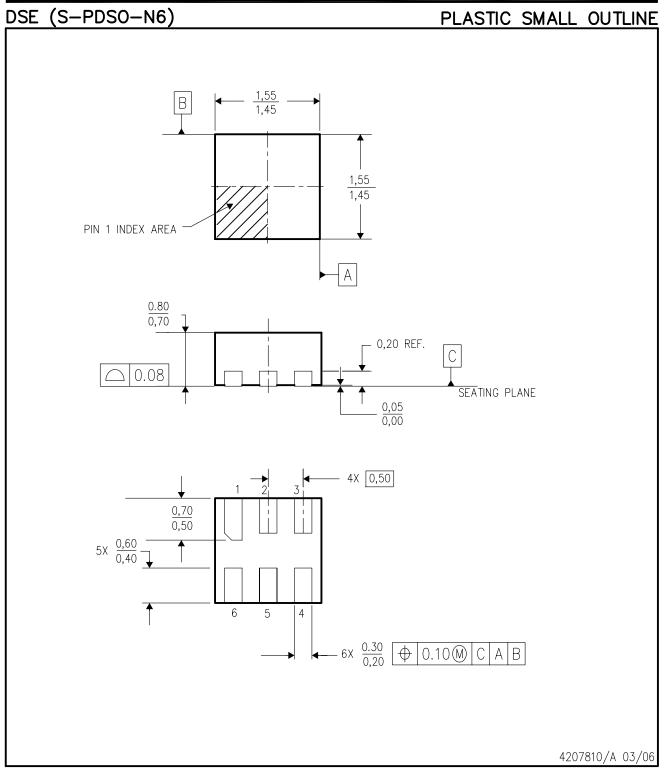
SLYZ022 — TI Glossary.


This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

DDC (R-PDSO-G6)


PLASTIC SMALL-OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-193 variation AA (6 pin).

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. This package is lead-free.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity